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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-261

ONE-DIMENSIONAL ANATYSIS OF ION ROCKETS

By Harold R. Kaufman

SUMMARY

A one-dimensional analysis was made of space-charge effects in ion
and electron accelerators and the problems associated with mixing beams
from such accelerators. The results of the analysis were examined to
determine some of the major design problems and performance limitations
of ion rockets.

Heavy ilons were found to be particularly desirable for high current
density when ion-accelerator lengths are limited by manufacturing toler-
ances rather than dielectric strength. The accelerate-decelerate prin-
ciple also helps to offset the effect of minimum electrode spacing on
ion current density.

The similar geometrical design of electron and ion accelerators
leads to excessive electron velocities or exit areas, or both, probably
even when the accelerate-decelerate principle is utilized for the elec-
tron accelerator. Excessive electron velocities cause only part of the
electron current to go downstream when neutralization is attempted.

High electron velocities can be utilized, however, if the total electron
current is large enough that the electron current transmitted is suffi-
cient to neutralize the ion beam.

The high-electron-velocity mixed-beam solutions are accompanied by
upstream electron currents; therefore, the ion accelerator must be able
to withstand electrons bombarding the exit. The accelerate-decelerate
principle is also useful for preventing harm to the ion accelerator due
to this electron bombardment, because the electrons will be unable to
pass through the field between the accelerating and decelerating
electrodes to reach the ion source.

INTRODUCTION

The concept of electrical space propulsion is not new. The accepted
initial reference for the concept is reference 1, a book by COberth pub-
lished in 1929. Subsequent technical advances in electric powerplants



spurred further study of electrical propulsion as shown in references 2
and 3. TFor example, nuclear-electric powerplant weights of the order of
10 pounds per kilowatt appear feasible. As shown in reference 3, elec-
trical propulsion with such a powerplant has the potential of transport-
ing large payloads in space with gross weights at least as small as those
of any competitive system.

The overall program for the investigation of the ion thrust unit, or
ion rocket, at the NASA Lewis Research Center is presented in reference
4, A derivation of the thrust equation and application to a one-
dimensional ion rocket with grid neutralization is presented in refer-
ence 5.

This report is limited to a one-dimensional analysis of space-charge
effects in ion and electron accelerators and the problems associated with
mixing beams from such accelerators. The results of the analysis are
examined to determine some of the major design problems and performance
limitations of ion rockets. Although accurate application of the results
is limited to those designs which approximate one-dimensionality, the
qualitative results are expected to be applicable to more general design
configurations.

SYMBOLS

A atomic weight per electronic charge

E potential gradient or electric field, volts/meter

E mean electric field, volts/meter

F thrust, newtons, (kilogram)(meter)/sec2

g dimensional constant, 9.807 meters/sec2

I specific impulse, sec

J current (positive for positive particles and negative for nega-
tive particles), amp

J current density (positive for positive particles and negative
for negative particles), amp/meterZ

k Boltzmann constant, 1.380x10725 joules/(°K) (molecule)

m particle mass, kilograms

m mass~flow rate, kilograms/sec




LU= LV
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n number density, neter™2

o, total number of particles per cubic meter, mjz-:-ter-3

n number rate, sec™t

q charge, coulombs

S cross-sectional ares, meters®

T temperature, °k

v potential, volts

'A particle thermal potential, volts

v mean thermal potential (potential of particle at ¥), volts
v particle velocity, meters/sec

v' particle thermal velocity, meters/sec

v most probable velocity of Maxwellian distribution, meters/sec
X distance, meters

B (4€0/9)/Af24/m

€ dimensional constant, 8.855x10712

A wavelength, meters

pq charge density, coulom.bs/meter3

Subscripts:

2,0, indices

c,d

av average

E station E, zero-electric-field plane

e emitted

eq equivalent (equivalent electron potential gives electron velocity

equal to ion velocity)



i ideal (ideal thrust assumes immediate neutralization at exit of
ion accelerator)

min minimum

N station N, neutralization plane

r reference station for measuring potential difference
t transmitted

tot total

1 station 1, particle source
2 station 2, acceleration electrode
3 station 3, deceleration electrode
+ ion
- electron

ANATYSTS

An ion rocket has accelerators for both positive and negative parti-
cles. A schematic diagram of an accelerator is shown in sketch (a):

AN Y

AV
Station 1 2
(a)

The plane of particle emission is designated station 1. Station 2 is an
accelerating electrode. A decelerating electrode will often be of use
and is designated station 3 when used. Since the decelerating potential
difference is always less than the accelerating potential difference, the
charged particles can escape from the accelerator. A zero electric
field, when it is found at some plane other than one of the stations
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noted, is referred to as station 1E or 2E, depending on what station it
follows. The distance in the direction of particle motion is measured
by the variable x. The distance between stations 1 and 2 is therefore
Xo = Xq. The potential difference between two stations is given in a

similar manner by V3 - V2'

The requirement of one-dimensionality is met by having constant-
area beams with conditions uniform on each plane normal to the direction
of motion and the moticn restricted to one direction. These requirements
may be met in practice by using parallel screens for electrodes and
having the beam width large compared to the distance between stations, or
it might be met by using a narrow beam with contoured electrodes outside
the beam such as suggested by Pierce. The electrodes were also assumed
to be good shields so that the space charge on one side of an electrode
would not affect a charged particle on the other side.

Since equal magnitudes of negative and positive beam currents are
necessary, both forms of accelerators are used in a complete ion rocket.
The positive particles are assumed to be ions, while the negative ones
are assumed to be electrons. Negative ions could be used in place of
electrons, but the added complexity (and weight) of another ion source
makes this solution undesirable.

Several arrangements of electron and ion accelerators might be used.
An array of small electron and ion accelerators might be used in the same
plane, as shown in sketch (b):

[:_, |

+

-]

I
Station 3

z——i—-

(v)

The electron beams would spread into the ion beams so that neutral beams
are effectively obtained at the neutralization plane, station N, which
is the distance xy - xz downstream of the accelerator exits. The



configuration of sketch (b) may depart considerably from the one-
dimensional neutralization plane; in which case only approximate agree-
ment with analysis would be expected. Another configuration that might
fit the one-dimensional requirement is the single-unit ion rocket shown
in sketch (c):

|
i
Station 3 N

(c)

The region between station 3 and station N may cause substantial
deceleration of the ions and therefore might be substituted for the
deceleration region between stations 2 and 3. The exit of the accelera-
tor in either sketch (b) or (c) would then be station 2.

It should be apparent that a large number of component arrangements
are possible. A deceleration region may be desired on either the ion or
electron accelerator, but not on the other accelerator; and the decelera-
tion region may be inside an accelerator or outside. Some means of elim-
inating the unpromising configurations is obviously of interest. To
carry this elimination all the way down to "one best design," however,
would be premature at present.

The approach in this report is more modest. The component regions
common to all configurations are considered one at a time: the accelera-
tion region (stations 1 to 2), the internal deceleration region (stations
2 to 3), the external deceleration region (from the saccelerator exit to
the electron-injection or neutralization plane, station N), and finally
a mixed electron-ion beam region downstream of station N. The one-
dimensional space-charge effects in each of these regions are examined
with regard to overall ion-rocket performance and problems. Thus, the
general results are in terms of a few overall design principles and
limits. These principles and limits can be used to eliminate some of
the many possible configurations, but the number of configurations re-
maining will be sufficient to offer ample challenge for further work
in the field.

OTH-H
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The space-charge effects in each of the regions are found by solving
Poisson's equation in one dimension, which is

QEK = - Eﬂ (1)
dx? €0

in the units of the rationalized mks system. The charge density Pq
can be expressed in terms of current density j and velocity v for
the case of uniform velocity at each station:

(2)

=d
Pq =%

The velocity can in turn be obtained from energy considerations:

v = A/2(V,, - V){(a/m) (3)

with the potential difference V. - V measured so that the velocity is
zero when the difference is zero.

Substituting equations (2) and (3) into (1),

v _ 3 (4)

o eoAl2(V, - V) (a/m)

Equation (4), then, is one form of Poisson's equation used in this report.

For problems dealing with both positive and negative particles, the
charge density of equation (1) can be evaluated as a sum of the positive
and negative charge density. Using equations (2) and (3), Poisson's
equation for this case becomes

aev

a-v _ J ] - [ J (5)
ax? N2V - V)(a/m)]_ |& #2(V, - V) (a/m)],

If a distribution of particle velocities is involved, integration will be
required to calculate the charge density:

afv _ [J 4 ()
ax? o con2(Vy - V)(a/m)

This form of Poisson's equation will be discussed in more detail in the
section on Maxwellian distribution.



Acceleration Region

The usual ion-acceleration region between stations 1 and 2 has the
boundary condition of zero initial velocity. The same boundary condition
can be applied in an approximate fashion to stations 1 and 2 in an elec-
tron accelerator, although the thermal motion will be found important
for electrons. Using the equations for the acceleration region, the per-
formance of accelerators without any decelerating electrodes and the need
for an accelerate-decelerate system can be shown.

Child's law. - Space-charge-limited current with zero initial veloc-
ity gives the boundary conditions at station 1 of

av _
=0

v =20

Integrating equation (4) from V; to Vs and from x3 to xp with
these boundary conditions yields the solution

se v, - v,)3/2
J = (—_25 %% (iz - il)z (7)

9

This solution was first obtained by Child in 1911 (ref. 6) and is usually
associated with his name.

Meking a substitution of

4€
- -0 /24

to simplify the symbols in equation (7),

_y\3/2
j=8 (:i _Vi))z (9)
z 1

The constants in equation (3) and (9) were evaluated in mks units and
are tabulated as follows:

Quantity Electrons Tons

A2q/m | 5.932x105%1 | 1.389x10%/A/A
B

2.334x10-61 | 5.467x10"8/4/&

aOTHR=-1T
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where A is the atomic weight per electronic charge, or simply the
atomic weight for singly ionized ions, and 1 is the square root of -1
(resulting from the negative charge of electrons).

Thrust and mean electric field. - The ideal thrust (the thrust that
would be obtained with neutralization immediately downstream of the
accelerator) can be related directly to the potential gradient in the
accelerator. The ideal thrust per unit beam area is

F. Vs v
i A -} 10
3 m-z =m-g {10)
The mass flow per unit area is
m_ .m
2=y (11)
Substituting equation (11) into (10),
Fa
__1_= iV B (12)
S 2 q

Substituting the velocity and current-density expressions (eqs. (3) and
(7)) into (12) gives
2
Ei_ _ 8¢, (v, - VZ) (13)
S (Xz - Xl)z

Noting that the mean electric field E 1is equal to (vl - Vz)/(x2 - xl),
equation (13) may be rewritten

F; 86 _2
1.-0x 14)
S 9 (

Finally, evaluating the constants in mks units,
-12_2 2
F;/S = 7.871X10 E newtons/meter (15)

Thus, the ideal thrust per unit beam area can be considered a function
of the mean electric field and independent of particle velocity or
charge-to-mass ratio. The maximum electric field is, of course, greater
than the mean value, but the factor is only'4/3 for the ideal one-
dimensional case considered.

Practical limits. - Practical limits on the electric field should
be considered before drawing conclusions from equations (14) or (15).
The limits on the electr%c field to which insulators should be subjected
are from about 108 to 10’ volts per meter, while high field electron
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emission (with subsequent arcing) occurs at about 108 to 102 volts per
meter. These are local and not mean values, so that electrode desigus
incorporating sharp edges and corners would arc-over at a lower mean

electric field than 108 or 109 volts per meter. Gaseous breakdown
through the ion beam need not be considered, because space-charge limita-
tions result in particle densities too low to permit electron cascades
and gaseous discharges.

A practical design limit of mean electric field might be about lO7
volts per meter. Equation (12) would then yield about 787 newtons per
square meter of beam area (or about 80 kilograms/sq meter). Such a
thrust-to-area ratio would be quite adequate for space propulsion ~ if it
could be obtained for all impulses and particle weights. Unfortunately,
minimum manufacturing tolerances may prevent full utilization of the
dielectric strength of an insulator or vacuum. An approximate minimum
electrode spacing of about 10-3 meter might be expected from manufactur-
ing tolerance limitations. With a spacing of 10-3 meter, acceleration
potential differences of less than 104 volts would yield mean electric-
field values below 107 volts per meter and, from equation (14) or (15),
correspondingly lower thrust-to-area ratios.

Specific impulse. - The accelerator potential difference for the
Child's law ion accelerator can be related to impulse and atomic weight
per electronic charge by dividing the velocity equation (3) by the

dimensional constant g:
vV, -V
I=JJMJmDSAW35K—3 (16)

For a round-trip Mars mission with a nuclear-electric powerplant
reasonably advanced over the present technoclogy, optimum impulses of
5000 to 10,000 seconds are indicated by reference 3. A satellite orbit
adjustment might utilize an impulse as low as 1000 seconds, while a
mission to the outer planets might require an impulse of 20,000 seconds
or greater. The range of interest for impulses is therefore from about
1000 to over 20,000 seconds.

Sketch (d) shows the specific impulse as a function of ion atomic
weight for an accelerating potential difference of 104 volts, which cor-
responds to a field of 107 volts per meter and a spacing of 10-5 meter.
Above the line, the design limit of 107 volts per meter can be used for
the field, while below the line the minimum electrode spacing of 10-3
meter is used. Also, the greater the distance below the line, the less
the mean electric field and (from eq. (14)) the less the thrust per unit
beam area. For atomic ions, the specific impulses desired for most space
missions fall below the line in sketch (d); consequently, heavy atomic
ions, or perhaps even heavy molecular ions, will be desirable for
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o) ‘\\\\\\
0
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o
Rk 104 NG
8 Vy - Vy = 10% volts
3 in eq. (16)
e
s | |
10° > .
1 10 10 10
Atomic weight per electronic
charge, A
(4)

maximizing thrust per unit beam area. The effect of operation below the
line in sketch (d) can be shown numerically by substituting equation (16)
into equation (13):

Fy _ 4,2

= = 1.955x10724 ———E—é;——g (17)
(x, - x;)

Thus, the thrust-area ratio decreases as the fourth power of impulse

below the line in sketch (4).

The values selected for maximum mean potential gradient and minimum
electrode spacing in the foregoing discussion (107 volts/meter and 107
meter) cannot be considered as more than rough approximations. Differ-
ent design compromises can change the effective limits for different
operating conditions. It is valid to conclude, however, that heavy ions
will be desirable for high thrust-to-area designs at all but the highest
specific impulses. The accelerate-decelerate principle (to be discussed
later) can be used to reduce, but not eliminate, the thrust-area penalties
associated with light ions and low specific impulses.

Electron accelerator problems. - For neutralization the total
electron-beam current must equal the total ion-beam current. If it is
assumed that the electron and ion accelerators have the same length
(limited by tolerances), a simple approximate equation can be derived to
show the connection between the velocity ratio and beam ares ratio of
the ion and electron accelerators. The approximation results from
ignoring thermal motion, which would probably be significant for elec-
trons. From Child's law (eq. (9)),

(vy - v2)3/2

(vy - 7,)%/2 .
<02 | J= |58 (x, - )2
(xp = x1)° |, Xp = X)° |

Sp (18)
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.2 ; (- v2)*/2 + E:l/z (19)
5y (v, - V)32 (m+)

Substituting the velocity expression (eq. (3)) in (19) gives

5 = (V_+)3 o (20)
S, v./ m_

For the same velocity and an lon atomic weight per charge of 100, the
ratio of electron- to ion-beam area would be 1.8X10°. The large weight
implied by such a large beam area for the electron gun would be unac-
ceptable. If, as an alternative approach, the ion-beam area is assumed
the same size, the electron velocity would be 57 times that of the ions.
As will be shown in the neutralization analysis, such a high electron
velocity poses a problem. The accelerate~decelerate principle, however,
helps to reduce both the electron velocity and the problem.

Internal Deceleration

Uniform initial velocity. - The internal deceleration region between
stations 2 and 3 in an ion accelerator has the boundary condition of
uniform but nonzero velocity at station 2. Again, the same boundary
condition applies approximately to an electron accelerator for the same
stations. A typical potential variation showing acceleration between

stations 1 and 2 and deceleration between stations 2 and 3 is shown in
sketch (e):

v

Potential,

93]
ct
o
ot
[N
[¢]
=]

Distance, x

(e)

The sketch is shown for positive particles, but could be applied to
negative particles merely by inverting the ordinate. A zero-electric-
field plane, station 2E, is shown between stations 2 and 3, although it
is also possible to have the zero-electric-field plane at station 2 or
3, or not in the region at all. The various possible locations of the
zero electric field and the various potentials at that plane correspond

faSaat S0 _ 2
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to a large number of solutions. A complete discussion of these solutions
is not within the scope of this report. If the reader is interested in
further details, references 5 and 7 are suggested.

The aim of this section is met if region 1 to 2 can be shown to be
space~charge-limiting for current with the same spacing hetween 1 and 2
as between 2 and 3, so that the accelerate-decelerate accelerator can be
analyzed by considering only the space-charge effects between stations 1
and 2. The current limitation of the station 1 to 2 region is demon-
strated by showing a solution of the station 2 to 3 region that will
carry more current than the 1 to 2 region with the same spacing. This
particular solution uses the boundary values of a zero electric field,
station 2E, between stations 2 and 3, with the particle velocity at sta-
tion Z2E equal to zero. Thus,

Vog = Vo =Vy -V, (21)
ejz = jl = (22)

Solving equation (4) for these boundary conditions,

(xg - Xz)z _ Vor - V3 3/4 2
577 = |2 v (23)
oz - 7) =

Comparing equations (9) and (23)(note Vog equals Vi), it is evident
that the left side of (23) can be considered as the ratio of current to
that obtained from Child's law for the same potential difference and
length. It is also evident that the ratio will be equal to or greater
than unity. Reference 7 shows some solutions for the same ratio of
(Vog - Vz)/(Vog - V), but with Vop # O, that have even higher current
ratios. But it will suffice here merely to note that, for the same
distances between stations 2 and 3 as between 1 and 2, more current can
be transmitted between stations 2 and 3. The dimensionless grouping on
the left side of equation (23) is used throughout this report and is
called the space-charge number.

Accelerate-decelerate. - An accelerator with an acceleration region
followed by a deceleration region is called an A-D (accelerate-decelerate)
accelerator. The deceleration may be internal or external (discussed in
the section on external deceleration), although only the internal decel-
eration is considered here. For the same minimum spacing between sta-
tions 2 and 3 as between stations 1 and 2, beam current is determined by
the electric field between stations 1 and 2. The impulse, as measured
at station 3 (ignoring external space-charge effects), depends only on
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the potential difference Vl - V3, so that a decrease in impulse will

not change the current. Operation at impulses below the line in sketch
(d) can thus be obtained without such a drastic reduction in thrust as
the Child's law, or accelerate-only case. From equations (13) and (16),
the thrust-area equation for the A-D accelerator is

3/2
F- 15 =
2 = 5.556x10 1°E_ IfA (24)

NXp - X

Comparing the A-D equation (24) with the Child's law equation (17) at a
point on the curve of sketch (d), the same thrust-area ratio i1s obtained.
This result should be expected because such a point for the A-D acceler-
ator corresponds to no net deceleration from station 2 to 3. If the
thrust-area ratios are compsred at lower impulses, the Child's law
values decrease as the fourth power of specific impulse, while the A-D
values decrease by only the first power of specific impulse.

This thrust-area advantage of A-D ion accelerators over Child's law
ion accelerators for low specific impulses, low ion weights, or both,
was also shown in reference 4. The A-D system 1s not without losses,
however, as some of the particles will strike the electrode at station
2. The resultant losses will be substantially independent of velocity
at station 3 and hence will be a larger fraction of beam power as the
final velocity is lowered.

The A-D principle has the further advantage for the ion accelerator
of establishing a potential difference between stations 2 and 3 that
would prevent electrons from going upstream to station 1. Sketch (e)
shows an electric field at station 3 that would initially accelerate the
electrons into the ion accelerator, but the electrons would not have
sufficient energy to reach station 2 and they would merely turn around
and go out again. As will be discussed in the section on the mixed
electron-ion beam, collisions between ions and electrons can be
neglected.

The A-D analysis also applies in approximate fashion to electron
accelerators, so that higher beam current densities can be obtained with
an A-D accelerator than with a Child's law accelerator with both having
the same final velocity. Further discussion of the A-D principle as
applied to electron accelerators, including thermal velocity effects,
is presented in the next section.

Maxwellian Distribution

In this section the Maxwellian distribution is discussed first by
itself and then as a boundary condition to solutions of Poisson's

9Ty
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equation for accelerators. Finally, the solutions of Poisson's equation
with a Maxwellian distribution are discussed in their applications to
accelerators.

A Maxwellian distribution of velocities in one dimension has the

differential equation,
2
n -(v' /%)
dn =( 0 )e av' - (25)

Wk

where dn 1is the number of particles in the velocity interval between
v' and v'+ dv', and the most probable velocity ¥ is

v = A/2kT/m (26)

To obtain the rate at which particles cross a unit area plane with s
velocity greater than v', equation (25) must be multiplied by the veloc-
ity of approach v' and integrated from v' +to infinity, to obtain

bR e

For charged particles, the potential expressions can be defined

12
oo v
V! o= 5 (28)
and
mvz
T = — 29
V = 2q ( )

which can be substituted for velocities. The flow rate of particles can
be multiplied by the unit charge to obtain current density:

noqs/zvl/z Ry

3=We (30)

or simply

3= 5 (1)

where the current Jj is the part of the emitted current Je with a
particle thermal potential greater in magnitude than V'. An alternative
definition of mean thermal potential in terms of temperature is

e|f o

V = (32)
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which, in mks units, is

¥ = 48.617X10°°T (33)

Thus, 11,605O K results in a mean thermal potential of 1 volt.

A Maxwellian distribution will be encountered with either a gaseous
particle source or emission from a hot surface. For a gaseous particle
source, such as a plasma, the Maxwellian distribution corresponds to the
equilibrium condition. In practice, the equilibrium condition is reached
quickly for electron-electron collisions and ion~ion collisions; hence,
the Maxwellian distribution usually applies. Since equilibrium between
electrons and jions is approached at a much slower rate, the electron and
ion distributions may correspond to different temperatures. Emission of
particles from a hot surface agrees both in theory and experiment with a
Maxwellian distribution, as shown in references 8 to 10.

Acceleration region. - First consider the usual case where more
current is emitted at station 1 than is transmitted to station 2. The
potential variation in sketch (f) is again for positive particles, but
would apply to negative particles if the potential variation were
inverted:

Ja |
: |
Je | ! |
Jh ]
> Ja | | >
‘_T ’ F L |
g Current densities
2 | |
) | |
e
0o I | |
{ |
| | |
! N 1
Station 1 X 1E 2

Distance, x
(£)

The emitted current density Jjo 1s equal to the sum of the current
densities j, and Jy, indicated in sketch (f). The transmitted current
density Jjy is simply Jg. The portion of the emitted current density
with insufficient thermal energy to reach station 1E reverses and returns
to station 1, as shown by J, and Jjg. With a Maxwellian distribution
of emitted particle energy, the current reversal process is, of course,
continuous, and not stepwise as indicated in the sketch.

AT~
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The charge density at any point x on the upstream side of station
1E is obtained by integrating equation (6) over the total current density
at that point. The total current demnsity at point x in sketch (f), for
example, would be Jjz + Jjp - Jo + Jg- Since the term Jo Trepresents
current that reversed before reaching point x, it was subtracted from
Jp» It is convenient for calculation purposes to divide the current into
downstream and upstream terms (ja + Jp - jc) and Jjg at point x. The
sum of these terms thus represents the total current on the upstream
side of station 1E, while the difference represents the current Jjy on
the downstream side of station 1E.

The differential current density, from equation (31), is
-V
dj = ~Jee /vdV'/V
or, in terms of transmitted current,

(Vip-V1-V')/V
dj = -jie av' /v (34)
Substituting equation (34) into (6),

Vyp=-V1-V") - (Vig=V,-V')/V —
jte(lE . /vdV'/V e L /_dV'/V

+
¢ Al2(v - v+ V) (a/m) A2(v' - v + V) (g/m)

V-V,

V-V
(35)

In line with the discussion of sketch (f) the first term represents the
downstream current and the second term the upstream current, with the
integration limits determined accordingly. The +e 1is for positive
particles, while the -~ 1is for negative particles. The sum of the two
terms of equation (35) represents the charge density on the upstream
side of station 1E, while the difference represents that on the down-
stream side.

Tntegrating (35) and substituting a?/2 for (V' - V - V1)/V give

da (36)

(Vim-V)/V A Y
p, = i - 1+ ’\j—g/ Z(VLE ke e—q'g/2
¢ A/2V(q/m) TJo

The positive sign in (36) is, of course, associated with the upstream
side and the negative sign with the downstream side. The integrand in
(36) can be readily evaluated from a table of the normal probability
function, but only for specific values of (Vg - V)/V.
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The charge density is used in Poisson's equation, but the Integra-
tion must be numerical because equation (36) is evaluated from tables.
Two equations that cen be used for numerical solution of equation (1),
Poisson's equation in one dimension, are

\'
+ eif by &V (37)
0 VlE

(z8)

E

and

v
. av
1B .2 [V pq &V
EO V.
Vg 1E

Equation (38) cannot be evaluated by numerical integration for the inter-
val from Vi to (VlE + AV), because there i1s a singularity at Vig-
The charge density varies slowly with potential close to Vig and there-

fore may be assumed constant to integrate the denominator of (58). Equa-
tion (38) can then be integrated to obtain the first distance increment:

e e i 2egiv (39)

The procedure outlined is substantially that used by Langmuir in
reference 11 for the case where more current is emitted than transmitted.
For this case the ratio of local current to transmitted current on the
upstream side 1s

(Vim=V)/V
j=die E (40)
On the downstream side the current 1s constant.

The results of reference 11, expressed in the parameters of this
report, are presented in table I. The local and integrated charge density
parameters in the table were calculated from equation (56) because they
were not included in reference 11.

The tabulated results of reference 11 are plotted in figure 1 in
terms of overall parameters that are more convenient for analysis and
design. The nondimensional numbers used in figure 1 are the space-charge
numbers based on both emitted and transmitted current and the ratio of
mean thermsl potential to the overall potential difference of the accel-
erator. Except for the case of zero thermal potential ratio, an increase
in emitted current always causes an increase in transmitted current.
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Also, unless emission-limited conditions are reached, an increase in
mean thermal potentlal causes an increase in transmitted current. The
zero thermal potential ratio agrees with Child's law, with the space-
charge number based on transmitted current equal to unity.

The intercepts with the 45° line in figure 1 are for zero electric
fleld at the emitter, which is for the limiting solution where
je = Jt = J. An equation for these intercepts was obtained by Langmuir

In reference 12 by taking the first two terms of a serles expansion.
That equation, with the constant changed slightly to give slightly
better accuracy (within 1 percent) for values of V/(Vl - Vz) between

zero and 10, 1is
2
Ixg = x7)
2 13 =1+2.5 ”’V”Y'V‘ (41)
B(Vl - Vz) 72 1= 72

Internal deceleration. - The boundary condition of a Maxwellian
distribution of particle energy superimposed on & uniform initial veloc-
ity is used for the internal deceleration region. As in the previous case
for internal deceleration, with uniform initial velocity, stations 1 and 2
will be current-limiting for the same spacing between 1 and 2 as between
2 and 3. This will be shown by again considering the boundary conditions
of a zero electric field (station 2E) intermediate between stations 2
and 3 and & minimum particle velocity of zero at that station (station
2E). Equation (41) can thus be applied to the region between stations
2 and 2E:

Y
09 - %2 _ 1 T (42)
B(Vog - Vp)3/2 VeE - V2

Comparing (42) and (41), with the potential differences the same and the
distance (XZE - xz) less than (x2 - xl), it is evident that the current

that region 2 to 3 can handle 1s greater than that for region 1 to 2.

An excess of emltted current over transmitted current would increase
the transmitted current, as shown in figure 1. However, to increase the
emitted current sufficiently to meske the current capacity of region 1
to 2 greater than that of 2 to 3 is probably impractical with respect
to particle-emission losses, and the region between stations 1 and 2
will probably be space-charge-limiting for the same distances between
1 and 2 as between 2 and 3.

Applications to accelerators. - The solutions with Maxwellian dis-
tributions as boundary conditions apply primarily to electron acceler-
stors. The thermal potential of ions may be significant for some
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low-specific-impulse applications, but generally it can be ignored. For
example, lons with an atomic weight per charge of 100 coming from a
source with a temperature as high as lO,OOOo X at a specific impulse of
only 5000 seconds would have a ratio of thermal potential to accelerating
potential difference of 0.0007. On the other hand, electrons coming from
a surface as low as 1000° X at velocities corresponding to a specific
impulse of 100,000 seconds would still have a thermal potential ratio of
0.03, 1In fact, a temperature of 1000° K without any accelerating poten-
tial difference is sufficient to give an average electron veloclty equiv-
alent to 15,000 seconds.

The A-D (accelerate-decelerate) principle is Jjust as valid with a
Maxwellian distribution for a boundary condition as with uniform velocity
boundary condition, but is limited primarily to electron accelerators.

In a manner completely analogous to the previous discussion with uniform
initial velocity, the A-D principle permits higher current densities for
the same final velocity. Electron impingement on the accelerating elec-
trode and the space charge at the exit of the electron accelerator place
practical limits on the use of the A-D principle, but it does represent
a partial solutlon to the area-velocity compromise for electron guns
discussed previously.

External Deceleration

The external deceleration region is between the lon accelerator
exit and the plane of electron injection. The electron-injection plane
is not a true neutralization plane, as the neutralization process does
not occur in a plane. There nmust be electric fields sufficient to dis-
tribute the electrons downstream of the electron-injection plane, al-
though the magnitudes of these electric fields are negligible compared
with those upstream. The solutions of the mixed electron-ion beam are
presented in a later section of this report, but for this section the
assumption of neutralization at the electron-injection plane and zero
electric field downstream of that plane will be an adequate approximation
of the real case.

The ion rocket exit is referred to as station 3 throughout this
section, although it may actually be station 2. The electron-injection
or neutralization plane is station N. Polsson's equation (eq. (1)) can
be written

& - e (43)

Thus, in passing from the downstream side of station N to the upstream
side, there can be no finite change in electric field without a finite
charge in the plane of N. Station N 1s assumed to be merely an

T



E-416

21

electron-injection plane without a physical electrode. Without an elec-
trode, there can be no finite charge in the plane of N, and the electric
fields upstream of station N must also be zero.

Uniform initial velocity. - Using the boundary condition of uniform

initial velocity, equation (4) can be integrated. The first integration
ylelds the electric field,

E = % (%)1/2 (2 Vi -V - a) (44)

The constant of integration, a, 1s evaluated as 24/Vy; - Vyy from the
additional boundary condition of E =0 at V = Vy. Integrating x
between xz and xy and integrating V between Vz and Vi ylelds
the solution

3y - x5)% 143 (Yl___V_N>l/2 -4 (M)Z)/z (45)

B(Vl _ VS)S/Z Vl - V3 Vl - V3

Maxwellian distribution. - For the case of external decelerastion
with a Maxwellian energy distribution superimposed on the initial veloc-
ity, numerical integration is necessary. The potentlal differences are
measured from the maximum value in the accelerator at station 1E. (If
all the emitted current is being transmitted, the zero electric field is
found at station 1, and station 1 is used instead of 1E for the potential
difference.) The integration was accomplished with equation (38) with
the potential integrated from Vi to Vz and the distance from xy to
xz. The reverse direction was used to provide a zero electric plane as

the starting point for the integration.

The solutions for the external deceleration region for a range of
thermal potential ratios are plotted in figure 2. The curve for
V/(Vig - Vz) = O was obtained from equation (45). The effect of in-
creasing thermal potential ratio at all values of the potential ratio,
(Vy - Vz)/(V1g - Vz), is to increase the space-charge number based on
the difference Vg - Vz. This result might be expected because an in-

crease in thermal potential, with other parameters held constant, means
an increase in average velocity at station 3.

An area of instability is revealed 1f all the parameters except cur-
rent density and the potential at station N are assumed constant, as
shown in sketch (g). A momentary increase in current will cause a
transient departure from the equilibrium operation, as shown by the two
horizontal arrows in sketch (g). The increased current will, after a
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short time, increase the space charge between stations 3 and N. With

Vz fixed, the increase in space charge will cause an increase in Vy,

as shown by the two vertical arrows in sketch (g). Below the maximum
current point A, the potential change offsets the initial current

change by moving the operating point back towards the equilibrium line,
and operation 1s stable. Above point A the converse is true. The poten-
tial change increases the initlal departure from equilibrium due to the
current change, and the operation is unstable.

The loci of the maximum space-charge numbers for the curves of fig-
ure 2 are shown by a dashed line. The region above this line is
described as a region of possible instability. There is "possible
instability" instead of just "instability" because stability depends on
what parameters are allowed to vary in a particular physical situation,
and the parameters assumed to vary 1n the preceding discussion may not
be the ones actually encountered. TFor example, & physlcal electrode may
be used at station N, and the zero electric field at station N may be
desired as a boundary condition to prevent any electrons from going up-
stream of station N. The potential at N could then be fixed, instead of
belng permitted to vary, and there would be no instability region.

It should be pointed out that the external deceleratlion solution
can be used for an A-D accelerator without a deceleration electrode, but
the amount of deceleration in the A-D system must then be small enough
to avold instability. For negligible thermal potential, the final veloc-
ity at station N would have to be at least half the initial veloclty to
avold this instability.

Only external deceleration of ions was considered to this point,
but this solution may be applied approximately to electrons in the region
between an electron-accelerator exit and the ion beam., The approximation

QTH-"
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stems from the zero-electric-field assumption at station N. The electric
fields of the mixing region are small compared with the ion electric
fields upstream of N (as assumed), but may be quite significant as com-
vared with the electric field upstream of a gimilar station N for elec-
trons. Any application to electrons should therefore be made with care.

Thrust calculation. - The problems of calculsting the thrust are
associated with the external deceleration region, as will be shown by
considering the magnitude of the various terms of the thrust equation.
The general thrust equatlon for gases composed of charged particles has
the usual hydrodynamic momentum and pressure terms plus the magnetic- and
electric-field forces. The pressure term is negligible with particle
densities of the order of 10-9 atmosphere. The magnetic-field force
term is negligible compared with the electric-field force term in the
absence of an external magnetic field and relativistic particle veloci-
ties, which are not considered here. Also, the momenta of electrons are
negligible compared with those of ions. The calculation of thrust re-
duces, then, to integration of lon-momentum forces and electric-fileld
forces. The external region where both ion-momentum and electric-field
forces are significant 1s between the exit of the ion accelerator and
the electron-injection plene, which is the ion external deceleration
region. For the simple one-dimensional case with both the velocity and
electric field wniform over the area S at any station,

— T —m— -

2

. €

F _ mv OE (46)
For further dlscussion of the thrust equation and the importance of the
various terms, see reference OS.

For an example of thrust calculation, consider the case of external
deceleration with uniform initial velocity. The first term is

N om
%‘C:j/\/:q AV -V (47)
The second term is obtalned from equation (44):
eOEz 2m
. = 3 ‘—(1-(/\/‘71“"/\/‘71"’3) (48)
Substituting equations (47) and (48) into (46),

g-_. 3 A /%E AV - V3 (49)

Equation (49) demonstrates two things. First, the thrust force is inde-
pendent of the plane of measurement as long as that plane is externsal
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to hardware. Second, 1t is simpler to calculate the thrust at a plane .
where the electric field 1s zero.

For thrust calculation where appreciable ion thermal velocities
are encountered, the ion-momentum term of equation (46) is replaced by
the sum of particle momenta, which in turn equals the product of mass

flow and average velocity:
vam _ Tay (50)
m S -8

Average velocity can be evaluated from

- ) ,/ NF* v e (51)
A2(rg - V)(a/m)  Jo Vig - Vs v

Equation (51) was integrated numerically, and the following equation was .

obtained empirically:

—  \3/4

v -

av 214 0.37 <——L—> (52)
A2(Vyg - V) (a/m) Vig = V

Equation (52) is accurate to about 1 percent for values of V/VS less
than 10.

Mixed Electron-Ion Beam

The difficulty in trying to match electron and ion accelerators was
brought out in the section "Acceleration Region.” The problem is prima-
rily one of compromising electron-gun size with electron velocity, with
both tending to be excessive, probably even with the A-D principle for
the electron accelerator. The problem, then, is one of trying to slow
the electrons after they are in the ion beam, so that the space charge
of the electrons will neutralize that of the ions.

Various processes act to slow electrons in an ion gas, such as
radiative recombination, bremsstrahlung, coulomb scattering, multiple
ionization of ions, and electrostatic forces. For the impulse range of
interest and probable particle density (assumed at 1016 per cubic meter),
only the electrostatic forces were significant. The lack of energy-
dissipating processes means that the previous approach with Poisson's
equation and the energy equation is adequate for mixed beams of lons
and electrons. The purpose of this sectlon 1s, of course, to determine ¢
the permissible electron veloclty for neutralization.

AT T el
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Equal electron and ion currents. - The solution with uniform elec-
tron veloclty and equal electron and ion currents uses equation (5).
The ion~-charge density is assumed constant, which 1s reasonable in view
of the high mass of the ions compared with the electrons. To simplify
the calculations, it is convenient to express the lon-charge density in
terms of the electron charge and mass and the equivalent electron poten-
tlal Veq. The equivalent potential for an electron is that potential
required to give lon velocity to the electron. Substituting the ion-
charge-density expression in equation (5), and measuring potential dif-
ference from the minimum potential Vpi,, which will be shown to corre-
spond to zero electron velocity, give

v _ -3 (1 _ [eq = Vain (53)
d.Xz eO«/2 (Vmin - Veq)(q/m) v - Vmin

To determine the integration limits of equation (53), some basic
characteristics of Poisson's equation must be considered. If the elec-
tron accelerators have reasonable areas, then, in the region immediately
downstream of station N, the electrons will have excess velocity over the
ions, and the net charge density will be positive. From Poisson's equa-
tion, the potential variation with distance is concave downwards for a
positive charge density. The maximum allowable electron velocity 1s

obtained by placing the maximum of the potential curve at station N, as
shown in sketch (h):

Potential, V

Station N Distance, x

(h)

As the electrons go downstream, they slow down until the potential falls

below the value required to glve ion velocity, and the charge density
becomes negative. The curve will then be concave upwards, as shown in

sketch (1):

Potential, V

Station N Distance, x min

(1)
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The maximum electron velocity at station N corresponds to the maximum
potential at that point. The maximum potential at station N 1s, in turn,
obtained with the lowest possible minimum downstream of station N. The
lowest minimum potential corresponds to zero electron velocity, which
agrees with the definition of potential difference used in equation (53).
Thus, the maximum electron veloclty at station N 1s obtained by integrat-
ing equation (53) over the range O to O for slope and Vpin to Vy for

potential. Integrating and solving for the potential difference at sta-
tion N,

V-V

min = 4(

Veq - Vopin) (54)

The maximum electron velocity at station N is therefore twice the ion

velocity for the condition of equal-magnitude electron and lon currents,

and occurs at & minimum electron velocity of zero. The potential varia-

tion shown in sketch (1) is cyclic with increasing distance. The wave-

length can be calculated by integrating equation (53) twice. The wave- .
length turns out to be exactly the ion velocity divided by the plasma

frequency, or

A = A/é(veq - Vmin)('q/m)_
1 (noqz ) -
2n "\ T

(55)

The electron density np 1in equation (55) 1is the mean value between

gstation N and the first minimum. Substituting mks values for constants
and expressing (54) in terms of lon properties,

A = 4.458X10'llvf/%/8i/2 (56)

The wavelengths calculated from equation (56) will generally be very
small compared to hardware dimensions.

Electron current reversal. - If the electron velocity 1s greater
than twice the ion velocity, only part of the emitted electron current
passes beyond the first minimum. If only part of the electron current
passes beyond the first minimum, then the ion beam will not be neutralized.
An obvious possibility 1s increasing the electron current when the elec-
tron velocity is increased, so the electron current that escapes will be
sufficient to neutralize the ion beam beyond the first minimum. The

electron current for such a condition downstream of station N is shown
in sketch (J):

QT H=1T
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i Je {
| Jb )l
] |
Ja, |

T »

I

{
Station N min
Distance, x

(3)

The transmitted, emitted, and total electron currents are

Je,- = Ja* Jp

2
dtot,- = da t b + I

The method of solution 1s the same as the previous one, except the total
electron current is used in the electron-charge term. The solution for
maximum potential at station N is

2
J
Vi = Vmin = 4(Veq - Vmin) <_§§ﬁ>_ (57)

or, in terms of electron and ion velocities,

J
v_ = 2v, ( ;:t) (58)

Thus, the electron velocity may be much greater than the lon velocity if
the total current is increased correspondingly. The returning electron
current Jo may or may not be collected by an electrode. If Jo 1s
merely reflected by electric fields in the ion accelerator, then the
actual thermionic emission need be no larger than the transmitted current
Jg¢+ Even when all the returning electrons are collected and the electron
accelerator must supply all downstream electrons, going to a higher
electron veloclty permits & reduction in electron accelerator exit area.

The length from station N to the first minimum is found to be larger
than the half-wavelength given by equation (56) by the ratio jtot/jt'
Downstream of the first minimum the wavelength would revert to that given
by equation (55) or (56).
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Maxwellian distribution. - The effect of a Maxwellian distribution
of energies superimposed on electron velocities was also used as an ini-
tisl boundary condition for the mixed-beam region. The solution was ob-
talned by numerical integration of equation (37) from the first minimum
to the maximum at station N. No net change of potential slope or electric
field is involved; thus only the Integration

v
N
.I. pg aV
v

min

need be considered. Starting at the minimum, integration is contlnued
until the value of the integral 1s zero, which 1s reached at Vy. The

charge density pq is the sum of the electron-charge density (from eg.

(36)) and the ion-charge density (assumed constant because of the high
ion-to-electron mass ratio). The solutions for a range of thermal poten-
tial ratios and total-to-transmitted current ratios were obtalned and are
plotted in figure 3.

The thermal potential ratio, —VY(Veq - min): was limited to values
less than x. For values greater than =, the integrated charge density
for a Maxwellian distribution of electrons was less than the charge
density of an equal-current-density lon beam, even with no accelerating
potential difference. Thus, a solution with a neutralized beam is not
possible for high thermal potential ratios. For the unity current ratio,
the variation of maximum potential ratio, (Vy - Vmin)/(Veq - Vmin), is

predicted within 0.15 by the approximate equation,
-V

v - 2
A mis = 1-[ v ] (59)
eq -~ 'min J‘T(Veq_ - min)

The magnitude of potential effect 1s roughly the same at the other cur-
rent ratios, so that percentagewise the thermal potential ratio is less
important at high current ratios. Current ratlos higher than unity in
figure 3 were calculated for the case where all electrons returning to
the ion asccelerator are reflected by an electric field instead of col-
lected by an electrode. The difference between the maximum electron
potentlals for either collection or reflection, however, is small for
the same current ratio.

The limit of =n for thermal potential ratlo raises some practical
questions, since it will be encountered in many proposed designs. The
electron thermal energies are so small that even small dissipative proc-
esses may permit operation at thermal potential ratios substantially
‘higher than =x. The effective value determined from experiment may
therefore depart considerably from .




E-416

29

SUMMARY OF RESULTS

Heavy lons are particulerly desirsble for high current density when
lon-accelerator lengths are limited by manufacturing tolerances rather
than dielectric strength. The A-D (accelerate-decelerate) principle also
helps to offset the effect of minimum electrode spacing on ion current
density.

The similar design of electron and ion accelerators leads to exces-
sive electron velocities, exit areas, or both, probably even when the
A-D principle is utilized for the electron accelerator. With excessive
electron velocities, only part of the electron current goes downstream
when neutralization is attempted. High electron velocitiles can be
utilized, however, 1f the total electron current is large enough that
the electron current transmitted is sufficient to neutralize the ion
beam.

Since the high-electron-velocity mixed-beam solutions are accompa-
nied by upstream electron currents, the ion accelerator must be able to
withstand electrons bombarding the exit. The A-D principle is also
useful for preventing harm to the ion accelerator due to this electron
bombardment, because the electrons will be unable to pass through the
field of the accelerating electrode and reach the ion source.

A possible limit on neutralizatlion 1s imposed by thermasl motion of
electrons. The analysis indicated an upper limit for the temperature of
the electron source for each value of specific impulse, although the
thermal potentials involved are small and the analytical results may not
agree with experimental findings.

Lewls Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, November 2, 1959
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TABLE I. - CONCLUDED. CHARGE AND CURRENT PARAMETERS FOR A
MAXWELLIAN DISTRIBUTION OF INITIAL VELOCITIES

(b) Transmission side

1/2(% - Vig - V T ViV 1/2(x. -
Y2 (xy - %) _;g_v__g %9 2%3 B2 Ve av 1F20x5 - %)
1/275/% t _A- v 3% = 7 51/oq3/4
0 1.772 0 0 7.0 | 0.3553 3.874 6.003
.01 1.589 .016 .156 7.5 .3445 1.049 6.269
.02 1522 .032 \231 8.0 3347 4.219 6.530
.05 1.201 .076 2371 8.5 .3256 4.384 6.786
.10 1.283 1143 .533 9.0 .3173 4.545 7.037
.15 1.202 .205 .661 9.5 ,3095 4.705 7.284
120 12141 1263 1T 10. 13023 £.854 7.526
.25 1.091 L3219 .869 1. .2893 5.150 8.000
230 1.049 1372 .959 12, 2779 5.434 8.461
.38 1.013 L424 1.044 13. 2677 5.706 8.911
.40 L9812 474 1.123 4. .2586 5.969 9.350
45 .9529 522 1.198 1s. L2503 6.224 9.779
150 9273 1569 1.270 16. 2128 6.470 10.20
.55 19040 \615 1.339 17. .2359 6.707 Jo.61
.60 .8827 -680 1.405 18. .2296 6.942 11.02
.65 .8131 .702 1.470 19. .2238 7.169 11.42
.70 .8449 .746 1.532 20. .218d 7.390 11.81
.15 .8280 .788 1.592 25. 1962 g.423 13.70
.80 .8122 -829 1651 30. 1797 9.361 15.48
.85 27974 -869 1.709 35. 1667 10.23 17.17
.90 .7835 .908 1.765 40. .1562 11.03 18.80
.95 17703 S947 1.820 45. 1175 11.79 20.37
1.0 .7579 -85 1.874 50. 21400 12.51 21.89
1.1 .7349 1.060 1.979 55. 1336 13.19 23.37
1.2 .7140 1.132 2.080 60. .1280 13.85 24.81
1.3 .6951 1.202 2.178 65. 1231 14.47 26.22
1.2 6775 1.271 2.274 70. 1187 15.08 27.60
1.5 L6614 1.338 2.367 75. 1147 15.66 28.95
1.6 16465 1.404 2.157 80. 1111 16.23 30.28
1.7 16325 1.468 2.545 85. 1078 16.82 31.58
1.8 .6195 1.530 2.632 90. .1048 17.31 32.87
1.9 16074 1.592 2.717 95. 21021 17.82 34.14
2.0 .5959 1.652 2.800 100. 109951 18.33 35.38
2.1 .5851 1.711 2.882 110. .09492 19.30 37.82
2.2 15745 1.769 2.963 izo. .09091 20.23 40.20
2.3 .5652 1.826 3.042 130. .08735 21.12 42.53
2.4 15560 1.882 3.120 140. .08422 21.98 44.82
2.5 .5473 1.937 3.197 150. .08138 22.80 47.07
2.6 15390 1.991 3.272 160. .07881 23.60 49.28
2.7 5312 2.045 3.346 170. 07647 24.38 51.45
2.8 .5236 2.098 3.420 180. .07433 25.13 53.58
2.9 .5163 2.150 3.493 150. .07230 25.87 55.68
3.0 15093 2.201 3.565 200. .07054 26.58 57.75
3.1 15026 2.252 3.636 250. .06312 29.91 67.72
3.2 14962 2.301 3.706 300. 05764 32.92 77.18
3.3 .4901 2.351 3.776 350. .05338 35.70 86.23
3.4 .4841 2.400 3.845 400. .04994 38.27 94.95
3.5 .4784 2.448 3.913 450, 104708 £0.70 103.4
3.6 14729 2.495 3.981 500. 104468 42.99 111.6
3.7 4676 2.542 1.048 550. .04259 45.17 119.6
3.8 .4625 2.589 4.114 600. .04079 47.25 127.4
3.9 14575 2.835 4.179 650. ‘03921 49.25 135.0
4.0 14527 2,680 4.244 700. 103777 51.18 1125
4.5 .4308 2.901 4.562 750. 103649 53.03 149.9
5.0 .4l18 3.111 4.868 800. .03533 54.83 157.1
5.5 .3952 3.313 5.163 850. .03428 56.57 164.2
6.0 .3804 3.507 5.451 900. .03331 58.26 1712
6.5 .3672 3.694 5.730 950. 03243 59.90 178.1
1000. .03161 61.50 184.9
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Figure 1. - Solutions for the acceleratiocn region with an initial Maxwellian v

distribution of emitted particle velocities.
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Figure 2. - External deceleration solutions with zero
electric field at neutralization plane.
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Figure 3. - Ratio of maximum electron potential dif-

ference to ideal potential difference as function
of thermal potential ratio for a mixed electron-ion
beam.

NASA - Langley Field, Va. E-416




